L-B定律的重要前提是■■◆“单色光”★■★★■◆,即只有一种波长的光◆◆◆;实际上■◆,真正的单色光却难以得到◆★◆。由于吸光物质对不同λ的光的汲取力量不同(ε不同),就导致偏离。“单色光”仅是一种抱负状况◆◆■■★,即使用棱镜或光栅等所得到的“单色光★★■■■◆”实际上是有肯定波长范围的光谱带,“单色光”的纯度与狭逢宽度有关,狭缝越窄,它所包含的波长范围也越窄。
1.标准曲线)个不同c的标准溶液◆■◆■◆,在适当λ下,通常为λmax下(这样即使被测物
3.特别蛋白的检测★◆◆■:微量白蛋白、转铁蛋白★◆、免疫球蛋白、补体C3■★◆◆★、C4等。
在恒定量的抗体中加入递增量的抗原形成抗体复合物(沉淀)的量见图1-1。曲线的高峰部分是抗原抗体比例最合适的范围,称为等价带◆★,在等价带前后分别为抗体过剩带和抗原过剩带★◆。
但是,不是任何状况下酶的催化反应速度都能与酶浓度成正比例★★■★◆。假如设计不当,所选择条件不合适时,反应速度v虽可能随酶浓度增加而加快,但不成正比例,即v≠k,所得结果消失误差。
2■■◆.单色器◆◆■★:将来自光源的光按波长的长短挨次分散为单色光并能随便调整所需波长光的一种装置凯发娱乐官网真人荷官棋牌。(1)色散元件——把混合光分散为单色光的元件是单色器的关键部分★★◆◆★!
3)部分试剂采纳单一试剂包装,节省试剂位◆■★◆◆,为自动生化仪扩展试验测试项目供应充分的空间★■★■。
2■★★◆★◆.直接比较法:已知试样溶液基本组成,配制相同基体、相近浓度的标准溶液,分别测定吸光度A标、A样依据L-A定律:A标=K·b·c标A样=K·b·c样则标标
2)备有各种上机包装规格★■◆★◆。包括★★■◆★★:Beckman、Olympus、Hitachi及通用包装规格供选。
连续检测速率法是选择反应曲线上两个测光点之间全部点吸光度的变化率■★,两点之间的全部点都参加计算。
事实上,L-B定律是一个有限的定律,只有在稀溶液中才能成立。由于在高浓度时(通常C>
抗原与抗体结合形成抗原抗体复合物的过程是一种动态平衡,其反应式为:Ag+Ab→Ag·Ab,抗体的亲和力是抗原抗体间的固有结合力,可以用平衡常数K表示:K=/。Ag·Ab 的解离程度与K值有关。高亲和力抗体的抗原结合点与抗原的打算簇在空间构型上特别适合★◆★◆★◆,两者结合坚固,不易解离■★★◆。
对于终点法或两点速率法,必需通过使用标准液★■,建立一条标准曲线。目前,很多试验室对酶类测试亦采纳标准液校正Factor 的方式,以消退仪器或试剂的系统误差。
当光线通过一个浑浊介质溶液时■★■◆,由于溶液中存在混浊颗粒,光线被汲取一部分,汲取的多少与混浊颗粒的量成正比,这种测定光汲取量的方法称为透射比浊法。这一方法早于1959年Schultre和Schuick 等报道应用于血浆蛋白与其抗体结合后形成复合物,导致浊度的转变◆■★◆◆★,再进行透射比浊测定,一般采纳抗体对抗原定量的透射比浊法,称为免疫透射比浊法。其原理是凯发娱乐官网真人荷官棋牌,利用抗原和抗体的特异性结合形成复合物,通过测定复合物形成量的多少对抗原或抗体进行定量的方法◆★★★★■。
依据L-B定律,A与c的关系应是一条通过原点的直线◆★★★◆★,称为“标准曲线★★■■◆”。但事实上往往简单发生偏离直线的现象而引起误差,尤其是在高浓度时。导致偏离L-B定律的因素主要有★◆◆:
光栅——由抛光表面密刻很多平行条痕(槽)而制成◆■◆■,利用光的衍射作用和干扰作用使不同λ的光有不同的方向,起到色散作用。(光栅色散后的光谱是匀称分布的)
在酶的浓度不变的状况下◆■■★,底物浓度对反应速度影响的作用呈现矩形双曲线(rectangular hyperbola)(图2)。
Cr2O42-■◆★★★、CrO42-有不同的A值,溶液的A值是二种离子的A之和。但由于随着浓度的转变(稀释)或转变溶液的pH值★◆,/会发生变化,使C总与A总的关系偏离直线◆★★★。
紫外-可见分光光度计是在紫外可见区可任意选择不同波长的光测定吸光度的仪器。
Lambert-Beer定律中的比例系数◆★■★◆“K”的物理意义是■★★:吸光物质在单位浓度、单位厚度时的吸光度。
应达到终点时的吸光度。依据吸光度的凹凸计算待检物质的量。终点法依据试剂的不同可分为一点终点法和两点终点法。对于单一试剂,在加入标本后◆◆★,反应即可进行,在反应达到终点后,读取反应点(吸光度),故一般选用一点终点法。对于两种或两种以上的试剂,加入第一试剂,通常只起到缓冲或者消退其他物质干扰的作用■◆■,此时待检物质没有参加反应,可读取第一个反应点,加入其次试剂后,待检物质发生反应,反应达到终点后■◆★★,读取其次个反应点。此即两点终点法★■。两点终点
2.两点定标:以水作为零点,标准液作为另一点,建立标准曲线。此方法适用于浓度随吸光度变化呈线性变化的试剂。曲线的方程为:Y=KX+B
最近国际上提出了酶活性的测定标准化新途径,就是使用公认的酶校准物使不同的常规方法的测定结果得到统一◆◆★◆■★。目前这项讨论已取得了肯定的进展■■。到现在为止IFCC和IRMM已经制备出GGT■■◆■★◆、ALP、ALT◆■★★★、AST、CK■■★◆■■、LDH以及AMY的有证参考物质(certified reference material)。
10★◆★★■.空白定标:以水做标准液,以消退试剂本身对测试的干扰。酶类测试常采纳此方法。
ε与b及c无关。ε一般不超过105数量级,通常:ε>
液体试剂、冻干试剂(制备试剂的工序为冻干★★★◆★■,试剂的外观为结晶状)、干粉试剂(试剂的外观为粉末状)。
2. 终点法一般用来检测代谢物的含量,通过测定标准液(校准液)的反应吸光度■★★◆◆,建立一条浓度与吸光度变化的标准曲线。通过检测标本的吸光度即可计算出该标本的浓度。
质含量较低也可得到较大的吸光度,因而可使分析的灵敏度较高),以适当的空白溶液作参比,分别测定A,然后作A-c曲线同条件下测定试样溶液吸光度Ax★■,查找对应的cx◆■★◆■■。
当一束平行单色光(只有一种波长的光)照耀有色溶液时,光的一部分被汲取,一部分透过溶液(图1-1)。
对于自动生化仪或半自动生化仪,需要设置肯定的程序(参数),使仪器根据给定的加入量吸取样本和试剂■■★★★★,并根据相应的测试方法进行测量,得到被测组分的含量◆★■★■◆。测定方法主要分为:终点法及速率法两类
对于一些通过免疫比浊法测定的试剂,多为此方法。由于抗原抗体反应形成浊度的线性范围较窄。
溶液中的溶质可因c的转变而有离解、缔合、配位以及与溶剂间的作用等缘由而发生偏离L-B定律的现象。
2■★◆■★■.HOOK效应对免疫试验的影响:在用免疫学方法测定抗原时,因存在HOOK效应,因此,应使反
汲取系数不行能直接用1mol/L浓度的吸光物质测量★★,一般是由较稀溶液的吸光系数换算得到◆■◆◆。
1■◆★.终点法一般用来检测代谢物的含量,通过检测机理A或B使全部待检物质与试剂发生反应,读取反
(1)钨灯或碘钨灯:放射光λ范围宽,但紫外区很弱,通常取此λ>
3. 汲取池:装被测溶液用的无色、透亮 、耐腐蚀的池皿◆★■★,光学玻璃汲取池——只能用于可见区石英汲取池——可用于紫外及可见区。
生化诊断试剂盒为由肯定的化学品或者酶类组成的多成分混合试剂(Reagent)◆★,最终以水溶液的方式,与待检测物发生一系列化学或者生化反应,通过生成物或反应物中某种物质的吸光度变化,测量待检测物中某种特定物质的含量。
1.HOOK效应定义■★■:当抗原与抗体反应时线性走向不是呈平台状无限后延■◆■★,而是向下弯曲状★■◆■◆,似一
试剂盒一般由一种或两种试剂组成,由两种试剂组成的分别称为R1和R2◆◆,但每种试剂均含有多于一种的化学组分,而非简洁的一种化学成分。部分试剂盒中包含有标准液(校准液)★■■★★◆,用于建立标准曲线.生化诊断试剂产品的适用范围:
(2)氢灯或氘灯:气体放电发光光源■◆★■,放射150~400nm的连续光谱,用作紫外区
目前常用于酶定量测定的方法是测量酶的活性浓度,此方法并不直接测酶蛋白含量◆★■■■★,实际上是测定酶催化反应的速度◆■,并由此间接地推算出标本中酶浓度的凹凸,这是酶测定方法独特之处◆◆■★。
依据汲取光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等★■★■★★。
在肯定的温度和pH条件下,当底物浓度大大超过酶的浓度时■★◆★■,酶的浓度与反应速度呈正比关系(图1)★◆★。
底物浓度很大时酶被饱和■◆◆■◆。反应速度不会连续增加,故此时反应速度为最大反应V。即从理论上说只有测定的是酶最大反应V,此时反应速度才和酶量E成正比例。也只有在此基础上建立起来的测定方法才是牢靠的◆★■、精确 的。因此酶活检测测定的是零级反应。
光是一种电磁波■◆★■。自然是由不同波长(400~700nm)的电磁波按肯定比例组成的混合光★◆◆★,通过棱镜可分解成红、橙◆◆、黄、绿、青■★、蓝、紫等各种颜色相连续的可见光谱。如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色◆★◆。例如绿与紫■★、黄与蓝互为补色★■★★。
104为强汲取;εε>
使用间接方法并不是由于该法比直接测定酶蛋白有许多优点■■★◆,事实上间接方法有不少不足之处,在很大程度上采纳间接法是出于无奈◆★■★◆■,由于在所测标本中酶蛋白浓度和其它蛋白相比明显偏低,这样科学家才想到利用酶蛋白的催化特性来测定酶;微量酶蛋白可以明显加快所催化反应的速度,并在特定条件下◆■,反应速度(v)可和酶浓度(E)成正比例。可以下列二式表示之◆◆■:
当白光通过溶液时,假如溶液对各种波长的光都不汲取,溶液就没有颜色。假如溶液汲取了其中一部分波长的光,则溶液就呈现透过溶液后剩余部分光的颜色★◆■■◆★。例如★★■◆■■,我们看到KMnO4溶液在白光下呈紫红色★★■◆,就是由于白光透过溶液时,绿色光大部分被汲取,而其他各色都能透过◆◆。在透过的光中除紫红色外都能两两互补成白色★★★◆■,所以KMnO4溶液呈现紫红色。
早期临床试验室测酶活性时常使用比色法,先让酶与底物在肯定温度下作用一段固定的时间,然后停止酶反应,加入试剂进行化学反应呈色测出底物和产物浓度的变化,由此计算出酶催化反应的速度。历史上这类方法常被命名为◆★◆“终点法”、“二点法”、“固定时间法”和“取样法★■”。大多数文献使用“固定时间法”。这种方法灵敏度低◆■★★、不能实时监测、计算的是酶催化反应的平均速度。最基本一点的是此类方法停止反应后才测底物或产物的变化★■。19世纪50年月,Warburg首先用分光光度计在340nm处直接监测到反应物NADH的动态变化过程。由于不停止酶反应★◆,不需添加其它呈色试剂。测定方法简洁◆★■■,结果精确 ,逐步取代了■■■★★★“终点法”成为目前测酶活性的主要方法。
0.01mol/L),汲取质点之间的平均距离缩小到肯定程度,邻近质点彼此的电荷分布都会相互受到影响★◆★★★,此影响能转变它们对特定辐射的汲取力量,相互影响程度取决于C,因此■◆■■◆,此现象可导致A与C线■■◆.化学因素
免疫复合物形成有三个阶段★★,第一阶段是复合物形成抗原抗体复合物;其次阶段是初步形成抗原抗体复合物,此阶段是复合物交联成大的网格状结构■■■■;第三阶段是复合物聚合产生絮状沉淀★■◆★。只有在抗原与抗体等价时即无过剩抗体,此时★■,复合物的结合与解离处于平衡状态■■■,其混浊程度达高峰★◆。在抗体过量时◆◆■◆◆,随抗原量的增加而复合物形成也增加,但是形成复合物的量和抗原的量不是呈线性关系的。抗原过量,抗原抗体复合物形成不但不增加,反而会削减◆■◆★★■,光散射或光汲取削减,检测结果反而偏低。因此抗原的测定只能在曲线的左侧进行,而且必需进行多点定标★★★■。
5.定值血清(多项标准液/C.F★◆.S)含有常规检验的全部项目的定值血清,用以建立标准曲线.质控血清◆■:日常用以监控测量的精确 度和测量结果可信性的一个指标◆◆。供应常规检测项目靶值和肯定
主要分为四类:A■★■◆■★. 通过试剂与被测物质形成有色物质或者通过试剂与被测物质反应使某些有色物质消耗◆★,在可见光区比色定量测量有色物质的含量,例如:GLU和TBIL;B. 在紫外区监测抗原抗体反应生成的浊度检测某些蛋白的含量■◆◆,例如IgA和IgG★◆■■★;C. 在紫外区监测NADH吸光度的变化率检测部分酶类的活性,如GOT和GPT;D■◆★◆◆. 在可见光区通过监测某有色物质的生成或消耗的速率计算酶类的活性,如AMY◆■■★★■。在特定波长下,试剂与标本发生反应后吸光度比反应前上升的反应称为升反应,反之则为降反应。
两点速率法适用于某些特别代谢物的测定■★◆★,这类测定反应吸光度随时间的变化而变化■◆◆■◆,在肯定时间内无到达终点的趋势■★◆★■,且反应的速度与待测物质的浓度接近正比关系。对于酶促反应而言,测定的是一级反应◆◆★★。随着反应的进行,底物渐渐的消耗,反应速度也会有肯定的下降,因此对于两点速率法而言,其反应曲线是一条接近于直线的曲线而非连续监测速率法中的直线。两点速率法可以通过检测某一物质生成或消耗的速率,计算待测物质的含量◆◆■★■。两点速率法中待测物质浓度的计算是通过在反应曲线上选择两个测光点计算此两点之间反应的平均的速率,来计算待测物质的含量◆◆★★★■,即为两点速率法。两点速率法与连续检测速率法存在以下的区分:
比色分析具有简洁◆★、快速、灵敏度高等特点,广泛应用于微量组分的测定。通常中测定含量在10-1~10-4mg/L的痕量组分。比色分析犹如其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点凯发娱乐官网真人荷官棋牌。但对于微量组分测定来说★◆■★,由于肯定误差很小,测定结果也是令人满足的★★◆◆★。在现代仪器分析中,有60%左右采纳或部分采纳了这种分析方法。在医学学科中,比色分析也被广泛应用于药物分析★■★◆、卫生分析、生化分析等方面。
在底物浓度很低时,反应速度随底物浓度的增加而急骤加快,两者呈正比关系,表现为一级反应。随着底物浓度的上升★■★■■◆,反应速度不再呈正比例加快,反应速度增加的幅度不断下降。假如连续加大底物浓度,反应速度不再增加,表现为0级反应★★◆★■。此时,无论底物浓度增加多大,反应速度也不再增加,说明酶已被底物所饱和。全部的酶都有饱和现象,只是达到饱和时所需底物浓度各不相同而已。
350nm
104为中强汲取■★◆★◆■。
只钩子或一把镰刀(HOOK)(参见图)◆■■◆★■,MILES(1974)依据此现象写实性地称之为HD-HOOK
上式为朗伯-比尔定律的数学表示式★★■◆◆。L-B定律可表述为■★■◆★■:当一束平行的单色光通过溶液时,溶液的吸光度(A)与溶液的浓度(C)和厚度(b)的乘积成正比。它是分光光度法定量分析的依据◆★◆■■■。
生化诊断试剂用于检测样本◆■★★★■,包括:人体血清(主要)、血浆及尿液中的各种酶类和代谢产物,用于帮助临床医生诊治疾病供应数据参考。
1■◆◆.摩尔吸(消)光系数(ε)■★:当c用mol/L★★■◆◆、b用cm为单位时■★★,用摩尔吸光系数ε表示,单位为L/mol·cm
在考虑或设计酶活性浓度测定方法时,重要的是要选择好各种条件,使在尽可能宽的范围内所测的反应速率v和酶浓度E之间存在着正比例关系★■◆★◆◆。
同理,CuSO4溶液能汲取黄色光■◆■★■,所以溶液呈蓝色★■。由此可见■■■◆◆,有色溶液的颜色是被汲取光颜色的补色◆★■。汲取越多,则补色的颜色越深★★★■◆■。比较溶液颜色的深度,实质上就是比较溶液对它所汲取光的汲取程度★◆◆◆。表1-1列出了溶液的颜色与汲取光颜色的关系。
速率法分为连续监测速率法和两点速率法。连续监测速率法一般用于样本中酶活性的测量,而两点速率法主要用于代谢物的检测◆■◆。
医院检验科生化室的各类全自动、半自动生化仪,分光光度计。适用于仪器自动以及手工操作。
(3)准直镜——以狭缝为焦点的聚光镜,其作用为:将来自于入口狭缝的发散光变成单色光把来自于色散元件的平行光聚集于出口狭缝
式中lgI0/I表示光线透过溶液时被汲取的程度,一般称为吸光度(A)或消光度(E)◆◆。因此★◆★★■■,上式又可写为:
对于一些特别试剂如◆■:K,Na★★■★,CL等,因水中痕量离子浓度的存在★★★◆,一般不以水作为零点★■■◆,而采纳定值的高、低两个标准液★◆◆,建立标准曲线.多点定标:采纳两个以上的标准液来建立一条标准曲线■■★★■。该曲线的特征一般为非线性,即吸光度与浓度的变化不是直线关系。计算方式在自动生化仪上可选择为:NONLINEAR或LOGIT-LOG法。
7.项目齐全◆★■◆■■、数据精确 。包含各种酶类项目的定值,避开各种输入K因数造成结果的偏差。
设入射光的强度为I0,溶液的浓度为c,液层的厚度为b,透射光强度为I,则
比色分析是基于溶液对光的选择性汲取而建立起来的一种分析方法,又称吸光光度法。
依据朗伯-比尔定律A=k c l,对于一个特定的测定体系而言,吸光系数k和溶液厚度l都是不变的,吸光度只和被监测物质的浓度有关。而被监测物质浓度的变化是和酶的浓度成正比的。因此不同样本在反应过程中吸光度的变化率只和酶的含量成正比■◆◆★◆。可以依据摩尔消光系数和溶液厚度以及反应体系中试剂和样本的量计算出理论K值■★★★◆,不需要用定标液而只用水对试剂的空白进行标定。当然,这并不是说由于存在理论K值◆■,就必需用理论K值,酶活检测也可以用标准液对系统进行校正,得出校准K值。
测定酶的催化活性虽然是临床上最常用的方法■★,但由于酶的催化活性不仅打算于酶的含量◆★■★★■,还受多种因素的影响,如所用底物的性质及浓度■◆★★◆、反应介质的pH★◆、温度★■■★、离子强度、激活或抑制因子等,因此具有方法依靠性■■。这是测定酶的催化活性存在的主要问题所在。因此对同一酶项目存在多种参考范围,各试验室间的结果缺乏可比性,室间质评用样本的靶值难以确定,甚至有时会引起临床上的误诊◆★■■。对酶活性测定进行标准化是解决这一问题的最好方法。早在20余年前国际上就开头了这方面的工作。当时提出的标准化途径是推举使用统一的测定方法,一些学术团体推出了临床常用酶催化活性测定的推举方法和参考方法。如国际临床化学联合会(IFCC)酶专家组已经完成了г-谷氨酰基转移酶(GGT)(1983年)★◆★、碱性磷酸酶(ALP)(1983年)、丙氨酸氨基转移酶(ALT)(1986年)★■■◆★、天冬氨酸氨基转移酶(AST)(1986年)、肌酸激酶(CK)(1991年)、乳酸脱氢酶(LDH)(1994年)及α-淀粉酶(AMY)(1998年)等的推举方法。经过多年的努力,胜利地提高了酶测定的质量和可比性。但效果仍不能令人满足,还存在一些较严峻的问题:第一,许多学术团体提出的推举方法,即使原理相同■◆◆,但试剂配方(缓冲液、底物、添加剂等)★★、反应温度等也可能不同■★,因此不同推举方法间缺乏全都性★■■;其次,推举方法无法跟上分析方法和分析技术上的进步;第三,它不适应自动化分析仪器。
有色物质溶液的颜色与其浓度有关。溶液的浓度越大★★◆■★,颜色越深■■◆★。利用光学比较溶液颜色的深度■■◆,可以测定溶液的浓度■★★。
式中,K为吸光系数,当溶液浓度c和液层厚度b的数值均为1时,A=K,即吸光系数在数值上等于c和b均为1时溶液的吸光度■■。对于同一物质和肯定波长的入射光而言,它是一个常数。